This document gives a complete list of technical data with some detailed explanations of the main systems, subsystems and performance of our generators, in order to support local sales documentation, tenders or even technical doubts.

Atlas Copco does not assume responsibility for possible errors. Atlas Copco reserves the right to make changes without prior notice.

Standard Model Scope

The QAC is our twenty-foot High Cube containerized unit, which provides superior power, is super silent and ideal for heavy duty applications. Its complete configuration makes it our High spec product.

The innovative dual compartment design whereby the power compartment and the cooling compartment are completely separate ensures maximum efficiency and safe operation in the most extreme conditions. In the power compartment, which houses the alternator and the engine, there are dual, contra-rotating fans facing each other, which help to reduce the noise level.

Serviceability is one our main concerns. Doors can be easily opened so that all components are always within reach, ensuring maintenance a service. Engine has full step-in access, alternator and air filters share same door access to avoid wasting time and sliding base concept also enables parts to be accessed by simply sliding out the appropriate section.

Standard Qc4004 controller with paralleling system makes possible to work with the mains and with other units (till 16) in applications as Independent Power Plants (IPP). Providing Atlas Copco Power Management System (PMS), which is a smart management of the load of our customers, saving costs in terms of fuel, maintenance and performance.

Features Benefits

- Carefully selected components, accurately developed and tested configuration
- Superior standard configuration and extensive option list
- 500 hours service interval and superior accessibility to all service points
- Compact and safe concept and sturdy design
- Designed and built to last

- Accurate and stable power regardless of the conditions
- Ability to power a wide range of applications
- Service efficiency: increased up-time
- Increased transport efficiency, separated control and power cubicle
- Superior resale value / longer life time

Manufacturing and Environmental Standards

The QAC range is manufactured following stringent ISO 9001 regulations, and by a fully implemented Environmental Management System fulfilling ISO 14001 requirements.

Attention has been given to ensure minimum negative impact to the environment.

The QAC range complies with the latest noise emission directives.

Declaration of Conformity

Our QAC falls under the provisions of the article 12.2 of the EC Directive 2005/42/EC on the approximation of the laws of the Member States relating to machinery, is in conformity with, the relevant Essential Health and Safety Requirements of this directive:

MACHINERY SAFETY (2006/42/EC): EN ISO 12100-1, EN ISO 12100-2, UNE EN 12601 ELECTROMAGNETIC COMPATIBILITY (2004/108/EC): EN 61000-6-5, EN 61000-6-4 LOW VOLTAGE EQUIPMENT (2006/95/EC): EN 60034, EN60204-1, EN 60439 ISO 8528: QAC generators are design to comply with ISO 8528 regulation

1. Performance Data

Generator		QAC 1350 TwinPower 2Vd Stage V				
Rated speed	rpm	1500	1800			
Rated power factor (lagging)		0.80	0.80			
Dated Drime Dawer DDD	kVA	1364	1450			
Rated Prime Power, PRP	kW	1091	1160			
Limited Time Dayler FCD (Stand by)	kVA	1446	1587			
Limited Time Power, ESP (Stand-by)	kW	1157	1270			
Continuous Operation Dower COD (Continuous)	kVA	1029	1091			
Continuous Operation Power, COP (Continuous)	kW	823	873			
Rated voltage (3ph. line to line)	V	400	480			
Rated voltage (1ph. line to neutral)	V	230	277			
Rated current 3ph. (PRP)	Α	1970	1744			
Rated current 3ph. (ESP)	Α	2089	1909			
Rated current 3ph. (COP)	Α	1485	1312			
Maximum sound power level (LWA) complies with 2000/14/EC	dB(A)	103	106			
Maximum sound pressure level (LPA) at 7 m	dB(A)	73	76			
Coupling engine/alternator		Disc C	Coupling			
Fuel Autonomy at full load	h	7:30	7			
Single step load acceptance (within G2, acc. ISO 8528-5:1993)	%	50	60			
Single step load capability	%	100	100			
Frequency droop (lower than % isochronous)	%	≤(0.25			
Maximum oil consumption 100% load	l/h	0.2	0.2			

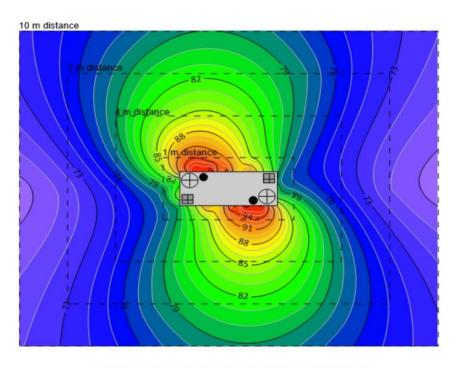
Derating Table (%)

	50Hz	Temperature °C (°F)									
		0 (32) 5 (41) 10 (50) 15 (59) 20 (68) 25 (77) 30 (86) 35 (95) 40 (104) 45 (1						45 (113)			
	0	100	100	100	100	100	100	100	95	90	80
Ε	500 (1640)	100	100	100	100	100	100	100	95	90	80
E 2	1000 (3280)	100	100	100	100	100	100	100	95	90	80
₽£	1500 (4921)	100	100	100	100	100	100	100	95	90	80
ei (2000 (6561)	100	100	100	100	100	100	100	95	90	80
ヹ	2500 (8202)	100	100	100	100	100	100	100	95	90	80
	3000 (9842)	95	95	95	95	95	95	95	90	85	NA

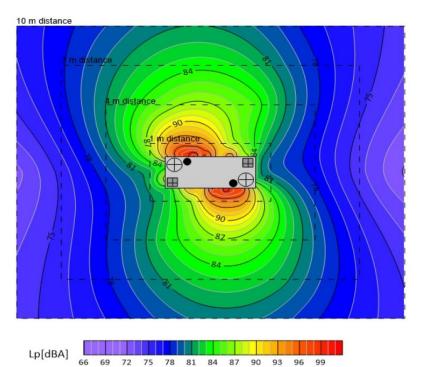
	60Hz	Temperature °C (°F)									
		0 (32)	5 (41)	10 (50)	15 (59)	20 (68)	25 (77)	30 (86)	35 (95)	40 (104)	45 (113)
	0	100	100	100	100	100	100	100	85	70	60
Ε	500 (1640)	100	100	100	100	100	100	100	85	70	60
= =	1000 (3280)	100	100	100	100	100	100	100	85	70	60
igh ⊕	1500 (4921)	100	100	100	100	100	100	100	85	70	60
ė.	2000 (6561)	100	100	100	100	100	100	100	85	70	60
Ĭ	2500 (8202)	100	100	100	100	100	100	100	85	70	60
	3000 (9842)	95	95	95	95	95	95	95	80	65	NA

Limitations*		QAC 1350 Twi	nPower 2Vd Stage V
Maximum ambient temperature	°C	(°F) 5	0 (122)
Altitude capability	m	(ft) 400	0 (13123)
Relative air humidity maximum	1	%	85
Minimum starting temperature	°C	(°F) -	10 (14)
Minimum starting temperature, with coldstart equipment	°C	(°F) -2	25 (-13)
Minimum running temperature, with coldstart equipment*	°C	(°F) -	10 (14)
* on high humidity regions freezing may occ	cur on the <i>br</i> e	ather pipes	
Application Data		QAC 1350 Twi	nPower 2Vd Stage V
Mode of operation		PRP /	ESP / COP
Max. Inclination			15 °
Operation		Singl	le / Parallel
Start-up and control mode		Mar	nual / Auto
Climatic exposure		C	pen air
Fuel tank capacity	1		793
Application Data – Fuel consumption Fuel tank capacity	ı		ower 2Vd Stage V
Fuel consumption at 0% load	l/h	22,3	
Fuel consumption at 50% load			29,3
	l/h	146,3	29,3 147,8
Fuel consumption at 75% load	I/h I/h	146,3 189,1	
Fuel consumption at 75% load Fuel consumption at 100% load		,	147,8
·	l/h	189,1	147,8 207,6
Fuel consumption at 100% load	I/h I/h	189,1 246.9	147,8 207,6 270,4
Fuel consumption at 100% load Specific fuel consumption	I/h I/h	189,1 246.9 212	147,8 207,6 270,4
Fuel consumption at 100% load Specific fuel consumption Specific mass fuel used: 0.86 kg/l	I/h I/h	189,1 246.9 212 QAC 1350 TwinP	147,8 207,6 270,4 214
Fuel consumption at 100% load Specific fuel consumption Specific mass fuel used: 0.86 kg/l Application Data – Urea Consumption	I/h I/h g/kWh	189,1 246.9 212 QAC 1350 TwinP	147,8 207,6 270,4 214 ower 2Vd Stage V
Fuel consumption at 100% load Specific fuel consumption Specific mass fuel used: 0.86 kg/l Application Data – Urea Consumption Urea tank capacity	I/h I/h g/kWh	189,1 246.9 212 QAC 1350 TwinP	147,8 207,6 270,4 214 ower 2Vd Stage V
Fuel consumption at 100% load Specific fuel consumption Specific mass fuel used: 0.86 kg/l Application Data – Urea Consumption Urea tank capacity Urea consumption at 50% load	I/h I/h g/kWh	189,1 246.9 212 QAC 1350 TwinP 2x 9,7	147,8 207,6 270,4 214 ower 2Vd Stage V
Fuel consumption at 100% load Specific fuel consumption Specific mass fuel used: 0.86 kg/l Application Data – Urea Consumption Urea tank capacity Urea consumption at 50% load Urea consumption at 75% load	I/h I/h g/kWh	189,1 246.9 212 QAC 1350 TwinP 2x 9,7 14,1	147,8 207,6 270,4 214 ower 2Vd Stage V
Fuel consumption at 100% load Specific fuel consumption Specific mass fuel used: 0.86 kg/l Application Data – Urea Consumption Urea tank capacity Urea consumption at 50% load Urea consumption at 75% load Urea consumption at 100% load	I/h I/h g/kWh	189,1 246.9 212 QAC 1350 TwinP 2x 9,7 14,1 18,3	147,8 207,6 270,4 214 ower 2Vd Stage V
Fuel consumption at 100% load Specific fuel consumption Specific mass fuel used: 0.86 kg/l Application Data – Urea Consumption Urea tank capacity Urea consumption at 50% load Urea consumption at 75% load Urea consumption at 100% load Specific mass urea used: 1,09 kg/l	I/h I/h g/kWh	189,1 246.9 212 QAC 1350 TwinP 2x 9,7 14,1 18,3	147,8 207,6 270,4 214 ower 2Vd Stage V 70 9 15,4 18,4
Fuel consumption at 100% load Specific fuel consumption Specific mass fuel used: 0.86 kg/l Application Data – Urea Consumption Urea tank capacity Urea consumption at 50% load Urea consumption at 75% load Urea consumption at 100% load Specific mass urea used: 1,09 kg/l Application Data – Exhaust system	I/h I/h g/kWh I I/h I/h I/h I/h	189,1 246.9 212 QAC 1350 TwinP 2x 9,7 14,1 18,3	147,8 207,6 270,4 214 ower 2Vd Stage V 70 9 15,4 18,4 ower 2Vd Stage V

(Reference conditions at 25°C(77F) Air Inlet Temperature, 60% Relative Humidity, 1bar Absolute inlet pressure, for different conditions or limitations contact Atlas Copco technical support).

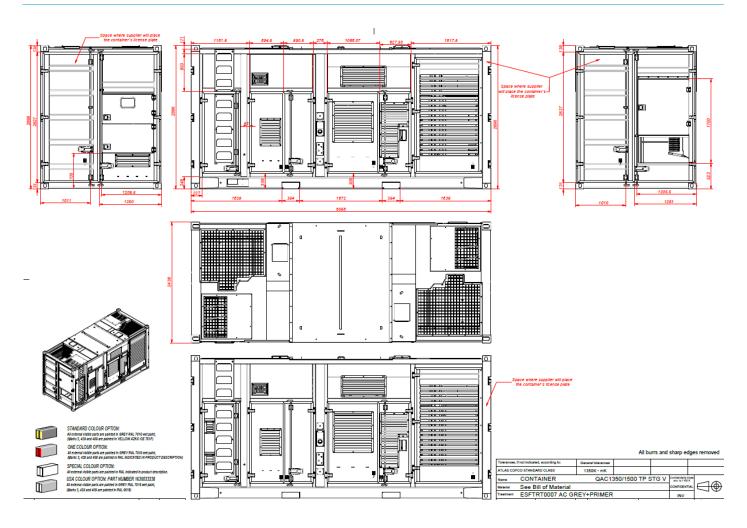

2x 104

m³/min


Exhaust gas flow

2x 113

The test is done at 75% of the prime power at 50Hz


The test is done at 75% of the prime power at 60Hz

2. Box

QAC 1350 TwinPower 2Vd Stage V Dimensions (L x W x H) mm (ft) 6058 x 2438 x 2900 (20 x 8 x 9,6) (ISO 20' High Cube) Weight Net mass kg (lb) 18200 (40130) 19700 (43450) Wet mass kg (lb) Capacity of spillage free frame 1770 (468) I (Gal) Foam silencer Thickness ٥С Min -30 Max 120 Temperature

Containers metal structure (internal and external) are all treated with a prime process that avoids rust and corrosion.

3. Engine

	rpm	1500	1800	
eneral				
Manufacturer		Vo	olvo	
Model			1683 GE	
Standard			' ISO 8528-2	
Power rated speed	kW	590 626		
Number of cylinders	u.		6	
Configuration		6	in L	
Aspiration		Turboo	charged	
Speed governor			etronic	
Bore	mm	1	44	
Stroke	mm	1	65	
Electrical system (DC)	V			
Compression ratio		16	5.8:1	
Displacement (swept volume)	I	16,12		
Piston speed	m/s	7.7	9.24	
Combustion system		Direct i	injection	
Charged air cooling system		Intercooled		
Maximum permissible load factor of PRP during 24h period	%	70		
r intake system	m³/min	2x 43	2x 48	
Air consumption 25°C (PRP) Air consumption 25°C (ESP)	m³/min	2x 45	2x 51	
Max allowable air intake restriction	kPa		3	
Air Filters	NГа		(2 per engine)	
Air filter cleaning efficiency	%		9.9	
7 iii iiiter eleariiiig enieleney	,,,		0.0	
poling system				
Coolant volume	I	2x	(95	
Coolant radiator liquid		Water / G	lycol 50/50	
Coolant radiator heat rejection	kW	188	218	
Coolant radiator max. temperature	°C	1	10	
Coolant radiator flow rate	I/s	6.5	7.7	
CAC radiator liquid		Water / G	lycol 50/50	
CAC radiator heat rejection	kW	139	160	
Air radiator flow rate	l/s	1.7	2.0	

TWD1683GE is a reliable, powerful and compact in-line 6 cylinder diesel engine.

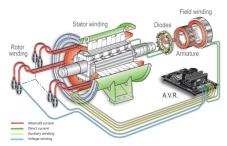
This 16 liter diesel engine utilizes dual-stage turbochargers and heavy-duty steel pistons to provide excellent power density. It features a proven combustion technology with high-pressure unit injectors, resulting in high fuel efficiency and low exhaust emission levels.

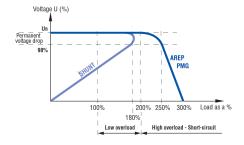
Efficient injection as well as robust engine design in combination with SCR technology (Selective Catalyst Reduction) contributes to low exhaust emission, excellent combustion and low fuel consumption.

The exhaust after-treatment system consists of only SCR, without EGR, DOC or DPF. A minimum of components are used and no downtime for regeneration or decreased service intervals. No EGR also results in less heat rejection, leading to excellent power density and improved fuel economy.

The engine also features a compact and low weight design that is well-balanced, providing smooth operation with low noise and vibration. It is designed for easily accessible service points.

4. Alternator


	QAC 1350 TwinPower 2Vd Stage V				
	rpm	1500	1800		
General					
Manufacturer			Somer		
Model		LSA 4	19.3 M6		
Standard		IEC 60034 / NEMAG MG 1.32-	33 / ISO 8528-3 / CSA / UL 1446		
Rated net power (Continuous duty/40°C)	kVA	730	915		
Number of wires		,	12		
Voltage regulator accuracy		+/-	0.5%		
Degree of protection / Insulation class		IP 2	23 / H		
Environment Protection		System 2 (Hur	nid atmosphere)		
Number of poles			4		
Number phases			3		
Overspeed	rpm	22	250		
Air flow	m³/s	1	1.2		
Total Harmonic Distortion THD		<	4%		
Waveform: NEMA = TIF		<	50		
Waveform: IEC = THF		<	2%		
Xd Direct axis synchro reactance unsaturated	%	294	307		
X'd Direct axis transient reactance saturated	%	14.2	14.8		
X"d Direct axis subtransient reactance saturated	%	11.3	11.8		
Excitation system		AF	REP		
Sustained short-circuit current	%	300%	(3 x ln)		
Time sustained short-circuit current	S		10		
Frame dimensions (single bearing)					
Lmax	mm	1:	372		
Height	mm	1(008		
Width	mm	7	86		
Weight	kg	15	578		
AVR					
Model		DV	C550		
Sensing		g S	hase		
Range of sensing	V(AC)		530		
Field excitation rated	A	C)-8		
Field excitation short-circuit (max.)	Α		15		
Power supply	V(AC/DC)	50-27	7 /8-35		
Communication		USB port 8	& CANJ1939		
PC Software		·	yReg		


The AREP system uses 2 independent auxiliary windings located in the main stator to send supply voltage to the AVR:

- The voltage delivered by the first auxiliary winding H1 is proportional to the alternator output voltage (shunt characteristic).
- The voltage delivered by the second auxiliary winding H3 is proportional to the current drawn by the alternator and is a function of the applied load (compound characteristic booster effect).
- The resulting phase-to-phase voltage supplies power to the AVR.

This power supply to the AVR power circuit is independent of the voltage sensing measured on the alternator output terminals. Therefore, the excitation current delivered by the AVR to the alternator exciter is independent of any voltage distortions (harmonics) due to the load.

The AREP system gives the alternator a high overload capacity (load impact or starting electric motors) and a short-circuit capability (300% - 10 s) in order to provide discriminating protection: the alternator with AREP excitation is shorter than the one with PMG excitation. It is particularly suitable for demanding applications.

QAC 1350 TwinPower 2Vd S5 ESF - Product Reference

Battery		
Quantity		2x 4
Voltage (one unit)	V	12
Capacity (one unit)	Ah	44
Connection		2x Series / 2x Parallel / engine
Dimensions (L x W x H)	mm	237 x 172 x 197
Cold cranking current (one unit)	Α	730 (-18°C) / 910 (0°C)
Time to 90% charge (100A) from 10,5V	min	35
Time to 90% charge (50A) from 10,5V	min	75
Time to 90% charge (25A) from 10,5V	min	140
Sensor		
Oil (temp, pressure & level)		via EMS
Coolant (temp & level)		via EMS
Intake manifold (temp)		via EMS
Fuel (boost pressure)		via EMS
Charge air (temp & pressure)		Via EMS
Fuel Level		4-20 mA sensor
Air Temperature		PT100 sensor
Coolant (temp) VSD		PT100 sensor
Earth leakage protection		
Relay model		RH99M (Schneider Electric)
Туре		A
Relay power supply	V(dc)	24
Threshold	А	0,03-30

Relay model		RH99M (Schneider Electric)
Туре		A
Relay power supply	V(dc)	24
Threshold	A	0,03-30
Fleetlink		
Model		SmartBox
Power supply	V(dc)	24
Coverage		2G-3G (Advanced)
COM Protocol		Modbus Serial (Advanced)

6. Power Output

		QAC 1350 TwinPo	ower 2Vd Stage V
	rpm	1500	1800
Circuit Breaker			
Model		NS1250 (Schr	neider Electric)
Poles		4	Р
Rated current (In)	Α	12	250
Long time protection (Ir)	Α	1000 (In x 0.8)	875 (In x 0.7)
Long time protection timer (tr)	S	1	2
Short time protection (Isd)	Α	4000 (4 x lr)	3500 (4 x lr)
Motor Driven DC voltage	V	2	4
Breaking capacity (at 440V AC 50/60 Hz)	kA	5	60
Rated service breaking cap. (at 440VAC 50/60 Hz)	kA	3	37
Mounting mode		Fix	red
Neutral position		Le	eft
Status of neutral			
TN-S (earthed)		Stan	ndard
Terminal Board			
Туре		4 + 4 Strip copp	per 100x10 mm
Bolts diameter per strip	mm	4 x	: 12

7. Controller

Controller

Base Box model	2 x Qc4004
Touchscreen / Display model	Qd1001

8. Options

Mechanical Options

QAC 1350 TwinPower 2Vd Stage V

Special Equipment (Refinery kit)		
Inlet shutdown valve		
Model		Wyndham FS1
Reset		Manual
Actuator		Electric power to close – 24VDC
Ambient air temperature	°C	From -20° To +120°
Switch type		Mechanically latched open, energise to close, manual reset
Offshore Container		
Standards & Regulations		EN 12079-1 / DNV 2.7-1
Painting		One colour / Special colour
Oil level maintainer		
Capacity of oil tank	1	2x 45

Electrical Options

PowerLocks	
660A connectors	4 rows

